

Algebra II 12

♦ This Slideshow was developed to accompany the textbook
 ♦ Larson Algebra 2
 ♦ By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 ♦ 2011 Holt McDougal
 ♦ Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

12.1 Define and Use Sequences and Series Sequence Function whose domain are integers List of numbers that follow a rule 2, 4, 6, 8, 10 Finite 12.1 Define and Use Sequences and Series Function whose domain are integers List of numbers that follow a rule 12.1 Define and Use Sequences and Series

n is like x, a_n is like y

Rule

$$\diamond a_n = 2n$$

- ♦ Domain: (n)
 - ◆Term's location (1st, 2nd, 3rd...)
- ♦ Range: (a_n)
 - ◆Term's value (2, 4, 6, 8...)

- Writing rules for sequences
 - Look for patterns
 - Guess-and-check

$$\otimes \frac{2}{5}, \frac{2}{25}, \frac{2}{125}, \frac{2}{625}, \dots$$

♦3, 5, 7, 9, ...

$$2/5^{1}$$
, $2/5^{2}$, $2/5^{3}$, $2/5^{4}$, ... $\rightarrow a_{n} = 2/5^{n}$

$$2(1)+1$$
, $2(2)+1$, $2(3)+1$, ... $\rightarrow a_n = 2n+1$

The n's are integers so there is no values between the integers.

- Series
 - ♦Sum of a sequence
 - ♦2, 4, 6, 8, ... → sequence
 - ◆2 + 4 + 6 + 8 + · · · → series

- Sigma notation
 - ♦ Finite

$$2+4+6+8=\sum_{i=1}^{4}2i$$

♦ Infinite

$$2+4+6+8+\cdots=\sum_{i=1}^{\infty}2i$$

Upper limit

Lower limit
Index of summation

(variable)

♦ Write as a summation

$$\diamond 4 + 8 + 12 + \dots + 100$$

$$\diamondsuit 2 + \frac{3}{4} + \frac{4}{9} + \frac{5}{16} + \cdots$$

a_n = 4n, lower limit = 1, upper limit = 25

$$\sum_{n=1}^{25} 4n$$

 $a_n = (n+1)/n^2$, lower limit = 1, upper limit = ∞

$$\sum_{n=1}^{\infty} \frac{(n+1)}{n^2}$$

Note that the index may be any letter.

12.1 Define and Use Sequences and Series $\sum_{k=5}^{10} k^2 + 1$

$$5^2 + 1 + 6^2 + 1 + 7^2 + 1 + 8^2 + 1 + 9^2 + 1 + 10^2 + 1 = 361$$

Some shortcut formulas

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Find the sum of the series

$$\sum_{k=1}^{10} 3k^2 + 2$$

♦ 798 #3-63 every other odd, 65 + 3 = 20

$$3\frac{n(n+1)(2n+1)}{6} + 2n = 3\frac{10(10+1)(2(10)+1)}{6} + 2(10) = 1175$$

- Arithmetic Sequences
 - Common difference (d) between successive terms
 - ♦ Add the same number each time
 - **♦**3, 6, 9, 12, 15, ...
 - \odot d = 3
- Is it arithmetic?
 - **♦**-10, -6, -2, 0, 2, 6, 10, ...
 - **♦**5, 11, 17, 23, 29, ...

No

Yes, d = 6

12.2 Analyze Arithmetic Sequences and Series Series \Rightarrow Formula for nth term \Rightarrow a_n = a₁ + (n - 1)d \Rightarrow 32, 47, 62, 77, ...

d = 15

$$a_n = 32+(n-1)15 = 32+15n-15 \rightarrow a_n = 17 + 15n$$

 \odot One term of an arithmetic sequence is $a_8 = 50$. The common difference is 0.25. Write the rule for the nth term.

$$a_n = a_1 + (n-1)d$$

 $50 = a_1 + (8-1)0.25 \rightarrow 50 = a_1 + 1.75 \rightarrow 48.25 = a_1$
 $a_n = 48.25 + (n-1)0.25 \rightarrow a_n = 48.25 + 0.25n - 0.25 \rightarrow a_n = 48 + 0.25n$

 \odot Two terms of an arithmetic sequence are $a_5 = 10$ and $a_{30} = 110$. Write a rule for the nth term.

$$a_n = a_1 + (n-1)d$$
 $10 = a_1 + (5-1)d$
 $\Rightarrow 10 = a_1 + 4d$
 $110 = a_1 + (30-1)d$
 $\Rightarrow 110 = a_1 + 29d$
Linear combination
 $-10 = -a_1 - 4d$
 $110 = a_1 + 29d$
 $100 = 25 d$
 $d = 4$

Substitute

10 =
$$a_1 + 4d \rightarrow 10 = a_1 + 4(4) \rightarrow a_1 = -6$$

Rule

$$a_n = -6 + (n-1)4 \rightarrow a_n = -6 + 4n - 4 \rightarrow a_n = 4n - 10$$

- Sum of a finite arithmetic series
 - \odot 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10
 - Rewrite
 - 1 + 2 + 3 + 4 + 5
 - **♦**10+9+8+7+6
 - **♦11+11 +11+11 +11 = 5(11) = 55**
 - ◆ Formula

$$\diamondsuit S_n = n\left(\frac{a_1 + a_n}{2}\right)$$

From example:

First and last $(a_1 + a_n) = 11$

10 numbers but only half as many pairs (n/2)

- Consider the arithmetic series
 - **♦**20 + 18 + 16 + 14 + ···
- Find the sum of the first 25 terms.

$$a_{25} = 20 + (25-1)(-2) = -28$$

 $S_{25} = 25((20+-28)/2) = -100$

- Consider the arithmetic series
 - **♦**20 + 18 + 16 + 14 + ···
- riangle Find n such that $S_n = -760$

♦ 806 #3-63 every other odd, 65 + 3 = 20

$$a_n = 20 + (n-1)(-2) = 22 - 2n$$

 $S_n = -760 = n((20 + 22 - 2n)/2) \rightarrow -1520 = n(42 - 2n) \rightarrow -1520 = 42n - 2n^2 \rightarrow 2n^2 - 42n - 1520 = 0 \rightarrow n^2 - 21n - 760 = 0 \rightarrow (n+19)(n-40) = 0 \rightarrow n = 40, -19$

- Created by multiplying by a common ratio (r)
- Are these geometric sequences?
 - **♦**1, 2, 6, 24, 120, ...
 - **♦**81, 27, 9, 3, 1, ...

No

Yes r = 1/3

Formula for nth term

Write a rule for the nth term and find a₈.

♦5, 2, 0.8, 0.32, ...

r = 2/5

$$a_n = 5(2/5)^{n-1}$$

 $a_8 = 5(2/5)^7 = 0.008192$

 \odot One term of a geometric sequence is $a_4 = 3$ and r = 3. Write the rule for the n^{th} term.

$$a_4 = 3 = a_1 3^{4-1} \rightarrow 3 = a_1 27 \rightarrow a_1 = 1/9$$

 $a_n = (1/9) 3^{n-1}$

 \odot If two terms of a geometric sequence are $a_2 = -4$ and $a_6 = -1024$, write rule for the nth term.

$$a_2 = -4 = a_1 r^{2-1} \rightarrow -4 = a_1 r$$

 $a_6 = -1024 = a_1 r^{6-1} \rightarrow -1024 = a_1 r^5$

Solve first for a_1 : $a_1 = -4/r$

Plug into second: $-1024 = (-4/r)r^5 \rightarrow -1024 = -4r^5/r \rightarrow -1024 = -4r^4 \rightarrow 256 = r^4 \rightarrow r = 4$

Plug back into first: $a_1 = -4/4 \rightarrow a_1 = -1$

Write rule: $a_n = -1.4^{n-1}$

♦ Sum of geometric series

$$\diamondsuit S_n = a_1 \left(\frac{1 - r^n}{1 - r} \right)$$

Find the sum of the first 10 terms of

$$r = \frac{1}{2}$$
, $a_1 = 4$

$$S_{10} = 4((1 - (\frac{1}{2})^{10})/(1 - \frac{1}{2})) = 4(.99902/.5) = 7.992 = 1023/128$$

♦ Find n such that $S_n = 31/4$ ♦ 4 + 2 + 1 + ½ + ...

♦ 814 #3-47 every other odd, 49, 51, 53, 57, 59 + 3 = 20

$$31/4 = 4((1 - (1/2)^n)/(1-1/2)) \rightarrow 31/16 = (1 - (1/2)^n)/(1/2) \rightarrow 31/32 = 1 - (1/2)^n \rightarrow -1/32 = -(1/2)^n \rightarrow 1/32 = (1/2)^n \rightarrow \log(1/32) = n \log(1/2) \rightarrow n = (\log(1/32)/\log(1/2)) = 5$$

Think of the box a 1 whole piece

What is the sum of the pieces if we keep going? 1 piece

12.4 Find the Sums of Infinite Geometric Series

Sum of an infinite geometric series

$$S = \frac{a_1}{1-r}$$

♦ If | r | > 1, then no sum (∞)

12.4 Find the Sums of Infinite Geometric Series

Find the sum

$$\sum_{i=1}^{\infty} 2(0.1)^{i-1}$$

$$12 + 4 + \frac{4}{3} + \frac{4}{9} + \cdots$$

$$a_1 = 2(0.1)^{1-1} = 2, r = 0.1$$

S=2/(1-0.1) = 2/.9 = 20/9

12.4 Find the Sums of Infinite Geometric Series

 \diamondsuit An infinite geometric series has $a_1 = 5$ has sum of 27/5. Find the common ratio.

 $27/5 = 5/(1-r) \rightarrow 27(1-r) = 5*5 \rightarrow 1-r = 25/27 \rightarrow -r = -2/27 \rightarrow r = 2/27$

Write the repeating unit as a sum of fractions 27/100 + 27/10000 + 27/1000000 + ... $a_1 = 27/100$, r = 1/100 S = (27/100)/(1-(1/100)) = (27/100)/(99/100) = 27/99 = 3/11

12.4 Find the Sums of Infinite Geometric Series * Write 0.416666666... as a fraction. * 823 #3-33 odd, 37, 39, 42 + 1 = 20

```
41/100 + 6/1000 + 6/10000 + 6/100000 + ... Ignore the 41/100 for now.
```

Now add the 41/100 41/100 + 1/150 \rightarrow (41*3)/300 + (1*2)/300 \rightarrow 123/300 + 2/300 \rightarrow 125/300 \rightarrow 5/12

- Explicit Rule
 - ♦ Gives the nth term directly
 - $a_n = 2 + 4n$
- Recursive Rule
 - ◆ Each term is found by knowing the previous term
 - $\bullet a_1 = 6; a_n = a_{n-1} + 4$

Both these rules give the same sequence

Write the first 5 terms

$$\bullet$$
 a₁ = 1, a_n = $(a_{n-1})^2 + 1$

$$\otimes$$
 a₁ = 2, a₂ = 2, a_n = a_{n-2} - a_{n-1}

$$a_1 = 1$$
, $a_2 = 1^2 + 1 = 2$, $a_3 = 2^2 + 1 = 5$, $a_4 = 5^2 + 1 = 26$, $a_5 = 26^2 + 1677$

$$a_1 = 2$$
, $a_2 = 2$, $a_3 = 2-2 = 0$, $a_4 = 2-0 = 2$, $a_5 = 0-2 = -2$

- \diamondsuit Write the rules for the arithmetic sequence where $a_1 = 15$ and d = 5.
 - **♦**Explicit
 - ◆ Recursive

Explicit:
$$a_n = 15 + (n-1)5 \rightarrow a_n = 5n + 10$$

Recursive:
$$a_1 = 15$$
, $a_n = a_{n-1} + 5$

- \diamondsuit Write the rule for the geometric sequence where $a_1 = 4$ and r = 0.2
 - **♦**Explicit
 - Recursive

Explicit: $a_n = 4(0.2)^{n-1}$

Recursive: $a_1 = 4$, $a_n = 0.2a_{n-1}$

12.5 Use Recursive Rules with Sequences and Functions *\times \text{write a recursive rule for } \times 1, 2, 2, 4, 8, 32, ... *\times 1, 1, 4, 10, 28, 76, ...

$$a_1 = 1$$
, $a_2 = 1$, $a_n = 2(a_{n-2} + a_{n-1})$
 $a_1 = 1$, $a_2 = 2$, $a_n = (a_{n-2})(a_{n-1})$

- Iterations
 - Repeated composition of functions
 - ♦ f(f(f(x)))
 - ♦ Use x to find f(x)
 - ♦ Use that value to find the next f(x)
 - $x_1 = f(x_0); x_2 = f(x_1), ...$
- Find the first three iterations of the function.

$$\bullet$$
 f(x) = 4x - 3, x₀ = 2

♦ 830 #3-31 odd, 35-39 odd, 43, 45 + 5 = 25

$$x_0 = 2$$

 $x_1 = f(2) = 4(2) - 3 = 5$
 $x_2 = f(5) = 4(5) - 3 = 17$
 $x_3 = f(17) = 4(17) - 3 = 65$

